A jumping shape memory alloy under heat
نویسندگان
چکیده
Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L2(1) parent before deformation, the 2H martensite stress-induced from L2(1) parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.
منابع مشابه
Similar Joining of NiTi Shape Memory Alloy using Nd:YAG Pulsed Laser Welding
In this research similar joining of NiTi shape memory alloy was studied. For this purpose, NiTi alloy in the form of wires with circular cross section possessing martensitic phase structure at room temperature was used. By utilizing Nd:YAG pulsed laser welding method followed by optimizing its technical parameters, a defectless joint in terms of appearance and metallurgical properties was obtai...
متن کاملExperimental Study on the Magnetomechanical Characteristics of Ni-Mn-Ga Ferromagnetic Shape Memory Alloy Single Crystals
Magnetic shape memory properties of Ni-Mn-Ga single crystals were characterized by measurement of stress-induced martensite reorientation under constant magnetic fields. Also magnetic field-induced strain as a function of the applied magnetic field under different constant compressive stress levels has been investigated. All the experiments were performed at room temperature in which the sample...
متن کاملEffect of Electrical Current on Nitinol Medical Staples Shape Memory
Medical staples are one of the nitinol shape memory alloys applications which their pedicles have to be bent for suitable function with an appropriate angle at a specified temperature .It is achievable by shape memory effect. For this purpose, samples of nitinol super elastic alloys were bent in a steel mold with different angles & formed orthopedic staples. Then shape memory effect was induced...
متن کاملA Shape Memory Alloy-Actuated Bio-inspired Mesoscale Jumping Robot
Jumping may be considered to be quite a useful means of mobile robot locomotion, but acquiring a stable landing has been a difficult problem. This paper reports on the design, analysis, simulation and experiments of a mesoscale jumping robot that is capable of stable landing. A jumping mechanism inspired by jumping insects is introduced and an actuation scheme using only on...
متن کاملEffect of Electrical Current on Nitinol Medical Staples Shape Memory
Medical staples are one of the nitinol shape memory alloys applications which their pedicles have to be bent for suitable function with an appropriate angle at a specified temperature .It is achievable by shape memory effect. For this purpose, samples of nitinol super elastic alloys were bent in a steel mold with different angles & formed orthopedic staples. Then shape memory effect was induced...
متن کامل